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Abstract 

          An autonomous or robotic car is commonly known as a self-driving car. This vehicle can 

sense its surroundings, navigate, and meet human transportation needs without any human intervention, 

which is a significant step forward in the advancement of future technologies. Self-driving cars use GPS, 

cameras, lidar, radar, and navigational paths to perceive their environment. The benefits of autonomous 

cars, such as increased reliability, fewer traffic collisions, increased roadway capacity, reduced traffic 

police, reduced traffic congestion, and care insurance, are compelling for the development of 

autonomous vehicles. However, issues such as software reliability, cybersecurity, liability for damage, 

and loss of driver-related jobs must be overcome. This study aimed to investigate local and global path 

planning for self-driving cars using two algorithms, namely A* and the potential field algorithm. The 

objective was to determine the effectiveness of each algorithm and explore how they could be combined 

to achieve optimal results. This article proposes a path-planning approach for a self-driving car in an 

environment with obstacles. The path planner is based on the strategy of using both global and local 

planners. The global planner is designed using the A* algorithm, which is used to generate an initial 

global path that provides an efficient way to guarantee the shortest path to the goal in an environment. 

The local planner is implemented using the potential field algorithm, which is used to adjust the path in 

real-time based on local obstacles and other dynamic factors. The intention of using a potential function 

is based on its safety, simplicity, and low computational cost. The proposed approach is evaluated in a 

simulated environment and shows promising results in providing an efficient way to guarantee the 

shortest path to the goal in an environment with obstacles. The combination of global and local planning 

techniques is expected to enhance the robustness and safety of autonomous vehicles in real-world 

scenarios. 
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1. Introduction 

An automobile accident can happen for a variety of reasons. Driver carelessness, poor road 

conditions, and bad weather are occasionally caused by a mix of multiple distinct circumstances. 

Moreover, in our era of huge technological advancements, technologies like cars are becoming 

increasingly accessible to the point where almost every family owns at least one car. Thus, increasing 

the number of accidents exponentially. 

Therefore, a gap in the market was created for self-driving cars, and self-driving Cars have gone 

from "maybe possible" to "definitely possible" to "inevitable." An autonomous vehicle can sense the 

environment, understand the surrounding scene, and make decisions without human interaction from the 

road to the destination [1]. The Society of Automotive Engineers has created a levels of driving 

automation that defines the six levels of driving automation [2], as shown in Figure 1 

                                                                                                                                                                                                        

 

                    

 

 

 

 
 
 
 

                                                                                                                                            

 

 

 

 

 

 

Figure 1 Levels of autonomous vehicles. 
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path planning, decision making, motion control, human vehicle interface, vehicle networking, and so 

on [2].  

        In recent years, numerous path-planning approaches have been proposed to address this challenge, 

with various algorithms and techniques used for global and local planning. The global planning 

algorithms focus on finding the optimal path from the start to the destination. In contrast, the local 

planning algorithms handle short-term adjustments to the path in response to the environment. Recently, 

several studies have proposed innovative approaches to address path planning for autonomous vehicles. 

For example, X Zhong et al. et al. propose a hybrid algorithm that combines the A* algorithm and the 

adaptive window approach to handle dynamic environments with moving obstacles [3]. Similarly, W 

Othman et  al. provides an overview of existing approaches and challenges related to using deep 

reinforcement learning for path planning by cooperative robots [4]. Additionally, D Kumar et al. propose 

a path-planning approach that uses fuzzy logic to generate smooth and flexible paths for the robot to 

follow in dynamic environments [5].  

          In this article, we propose a path-planning approach that combines the A* algorithm for global 

planning and the potential field algorithm for local planning. The potential field algorithm simulates the 

behavior of physical particles in a field of forces, with attractive forces toward the goal and repulsive 

forces away from obstacles. This algorithm has been shown to be effective in local planning for 

autonomous vehicles, as it can quickly adjust the trajectory based on changes in the environment [6]. 

Our proposed approach aims to take advantage of the strengths of both the A* and potential field 

algorithms to generate a safe and efficient trajectory for autonomous vehicles. The global planner 

generates an initial path that guarantees the shortest path to the destination, while the local planner 

adjusts the path in real time based on the current environment. Our approach is evaluated in a simulated 

environment, and the results show promising efficiency in generating safe paths. 

2. Path planning 

          Path planning is an essential aspect of vehicle detection. It is defined as the process of establishing 

a geometric path from the vehicle's current position to a destination point while avoiding obstacles. To 

be considered an acceptable path, it must be feasible for the vehicle to cross and be optimal in at least 

one variable. For certain distance conditions, the shortest, smoothest, or fastest path that the vehicle can 

follow may serve as the base path. In other words, the optimal path is determined based on these factors. 

Path planning is commonly done by discretising the space and using the center of each unit as a moving 
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point. Each movement location either has a barrier to avoid or is free of impediments that can be 

accessed. Various discretisation processes produce different motions  [7] Creating an environmental map 

is required for path planning. Environmental map construction involves creating an exact positional 

description of various items in the area where the robot is located, such as road signs, obstacles, and so 

on. In other words, it involves the creation of a model structure or map. The goal of creating an 

environmental map is to enable the robot to plan the most efficient path from the starting point to the 

destination point within the model of the specific environment with obstacles. Path planning methods 

can be classified into two strategies based on the level of environmental knowledge: path planning based 

on global map data and path planning based on local map data [8]. 

2.1 Global path planning 

           To compute an initial path, a global path planner requires the beginning and ending points of a 

constructed map, which is also known as a static map. The search is performed on the constructed global 

map model using a global map description of the area where the robot is placed. The best algorithm will 

find the best path. As a result, global route planning consists of two parts: creating an environmental 

model and the path planning strategy [9]. Heuristic A* searching algorithm is commonly used for global 

path planning [10].   

2.1.1   A* algorithm 

          In 1968, Hart proposed the A* heuristic technique. It is a common graph path planning algorithm. 

A* is mostly utilised to provide a nearly perfect solution with the current dataset/nodes. This approach 

is widely utilised in stationary environments and, in certain circumstances, in dynamic environments. 

The core functionality of a particular application or domain can be customised according to our needs. 

A* follows a road tree from its beginning point to its goal. At each iteration of its main loop, A* must 

choose which of its paths to extend. It determines this based on the path's cost and estimates the cost of 

expanding the path to the destination. Specifically, A* uses the formula below to choose the path that 

minimises n. 

 f(x) =  g(x) +  h(x)                     (1)  

x is the next node on the path 

g(x) represents the actual expense cost from node n to the beginning node 
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h(x) represents the cost of the best path from n to the destination node 

          In the game industry, the A* algorithm is commonly employed. The A* method has since been 

utilised for robot path planning, graph theory, intelligent urban transportation, and automated control as 

artificial intelligence has advanced. The A* algorithm is a heuristic that uses heuristics to choose the 

best path. The A* algorithm must locate nodes on the map and apply appropriate heuristics for guidance, 

as shown in Figure 2. Table 1 contains standard heuristic functions such as Manhattan distance, 

Euclidean distance, and Cross distance [11], [12]. 

Table 1 Most Common Types of Heuristic Functions Used in Path Planning Algorithms. 

Function Equation 

"Euclidean distance " "√(𝑋1 − 𝑋2)2 + (𝑌1 − 𝑌2)2" 

"Manhattan distance" "|𝑋1 − 𝑋2| + 𝑌1 − 𝑌2|" 

"Octile distance" "Max (|𝑋1 − 𝑋2|, |𝑌1 − 𝑌2|)" 
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Figure 2 Path planning flowchart using the A* algorithm. 

 

start 

Initial start location ‘n’ and put it 

on open list 

Detect all the successor 

location of ‘n’ which not 

exist on closed list 

Remove from the open list and put on 

closed and save the index of the location 

‘n’ which has the smallest f(n) 

Calculate cost function 

f(n)=g(n)+h(n) 

 

Calculate cost function 

f(n) for each location 

Terminate the algorithm, and 

use the pointers of indexes to 

get the optimal path 

If ‘n’ is the 

target location 

End 

Yes 

 

No  



 Vol. 03,  No. 01    (2023)                                                                                                                                                                             ISSN: 2709-6718 

2.2 Local path planning 

         Path planning that requires the robot to navigate in an uncertain or dynamic environment is known 

as local path planning. The algorithm will adapt to barriers and changes in the environment wherever it 

is used for path planning. Local route planning may be characterised as real-time obstacle avoidance 

employing sensory-based information on contingencies impacting the robot's safe navigation. Normally, 

a robot is driven with one path in local path planning .The shortest path from the starting position to the 

goal point is a straight line, which the robot follows until it encounters an obstruction. The robot then 

executes obstacle avoidance by deviating from the line while also updating certain key information, such 

as the updated distance from the present location to the goal point, the obstacle departure point, and so 

on. In order to reach the destination exactly, the robot must constantly know the position of the 

destination point from its present position in this type of path planning. The potential field approach is a 

well-known local path planning technique[13]. 

2.2.1 Potential field method 

          The function's basic objective will be to predict a comprehensive path-planning algorithm that 

takes the robot via vector quantities of the target's attractive force and repulsive forces from obstacles in 

the area. The aim is to discover a direct path from the robot's starting point to the destination position 

while avoiding obstacles. The potential functions to be investigated are differentiable real value 

functions; hence, given that the potential function's value is energy, the gradient of this function will 

create the force. A potential field gradient is predicted to drive the robot to the goal position based on 

this simple but powerful assumption.  

        The job's success is dependent on the robot's possible attractive and repulsive gradients. The robot 

and the rest of the obstacles are believed to be positively charged, whereas the target is supposed to be 

negatively charged. This charge difference produces repulsive forces that push the robot and pull the 

target. The potential function is the sum of the potential attractive and repulsive of a robot. 

U = Uatt + Urep                       (2) 

𝑈𝑎𝑡𝑡 is the attractive potential field 

𝑈𝑟𝑒𝑝  is the repulsive potential 

Attraction tends to drag the robot toward the desired place, while repulsion drives the robot away from 

obstacles. The gradient U yields a vector field for artificial forces F(d). 

𝐹(𝑑) = −∇𝑈𝑎𝑡𝑡 + ∇𝑈𝑟𝑒𝑝           (3) 
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𝐹(𝑑) = −𝐹𝑎𝑡𝑡 + 𝐹𝑟𝑒𝑝                    (4) 

∇U is the gradient vector of U at robot point d (x, y) 

𝐹𝑎𝑡𝑡 is an attractive force 

𝐹𝑟𝑒𝑝   is an attractive force 

Kathiep's general form of suitable potential field functions is given below.  

(a) attractive potential field and force 

𝑈𝑎𝑡𝑡 =
1

2
𝜁𝑑2                                     (5) 

𝐹𝑎𝑡𝑡 = ∇𝑈𝑎𝑡𝑡 = 𝜁(𝑑)                      (6) 

𝜁  is the attractive potential coefficient 

𝑑 = | 𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 − 𝑑𝑔𝑜𝑎𝑙 |  

𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 is the vehicle position at (x, y) 

𝑑𝑔𝑜𝑎𝑙     IIs the goal position at (𝑥, 𝑦) 

The attractive force is a linear function that decreases as the vehicle nears the goal. 

(b) repulsion potential field and force 

𝑈𝑟𝑒𝑝 = {
1

2
𝜂 (

1

𝑑
−

1

𝑑°
)

2
=

1

2
𝜂(ln 𝑑 − ln 𝑑°)

2          𝑖𝑓 d ≤ 𝑑°

0,                                                                        𝑖𝑓 𝑑 > 𝑑°

   (7) 

𝐹𝑟𝑒𝑝 = ∇𝑈𝑟𝑒𝑝 = 𝜂𝑒−|𝑑−𝑑°|               (8) 

𝜂 is the repulsive potential coefficient 

𝑑 = | 𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 − 𝑑𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 |  

𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 is the vehicle position at (x, y) 

𝑑𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒   is the obstacle position at (𝑥, 𝑦) 

𝑑° is the influence of distance.  

The repulsion capability ensures that the potential increases significantly as the vehicle approaches the 

obstacle and has no effect when the car is further away[14]. 

3. Simulation and Discussion: 

            A self-driving car simulation was utilised to plan the path for an autonomous vehicle to move 

from the starting point to the endpoint. The program initially selects and presents the map on which the 

vehicle will operate, along with the starting and target locations. Next, the A* algorithm is used for 

global path planning, and the Potential field algorithm is employed for local path planning. The A* 

algorithm generates a global path from the start to the target by executing on the known environment, 
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aiming to avoid getting stuck in local minimums that may exist on the map in the absence of considering 

any obstacles. The path provided by the A* algorithm is then defined at multiple equally spaced path 

points, which serve as potential intermediate field targets . 

The Potential field algorithm calculates the direction of the planner by determining the attractive and 

repulsive potentials of each potential direction. The attractive potential is based on the distance between 

the current location and the goal, while the repulsive potential is based on the proximity of obstacles. 

This means that the path point closest to the vehicle's starting position will generate an attractive starting 

potential field. As the vehicle approaches this coordinate, it will stop pulling and turn towards the next 

closest point. Intermediate waypoints guide the vehicle across the map, allowing it to navigate through 

obstacles in real time. The potential domain diagram is executed at each time step, generating a path up 

to a few time steps into the future. The primary purpose of using such potential field targets is to ensure 

that the vehicle can successfully navigate through the map while avoiding obstacles . 

This study aimed to investigate local and global path planning for self-driving cars using two algorithms, 

A* and the potential field algorithm. The objective was to determine the effectiveness of each algorithm 

and explore how they could be combined to achieve optimal results. The findings indicated that the A* 

algorithm was highly effective in planning the global path, irrespective of obstacles. However, it had 

limitations in terms of local planning, which could lead to collisions with obstacles if not properly 

addressed. Figure 3 illustrates the global path planning using the A* algorithm . 

On the other hand, the potential field algorithm was effective in local planning as it considered the 

influence of obstacles on the car's movement in real-time. However, it sometimes got into closed road 

problems when planning the path, limiting the car's ability to navigate the environment. Figure 4 shows 

an example of closed roads in the planned path using the potential field algorithm . 

To address the limitations of both algorithms, a combination of A* and the potential field algorithm was 

used. The simulation results showed that the planner was able to navigate around obstacles and follow 

the road map to reach the goal. The planner used the potential field algorithm to determine the direction 

in which it should travel, and the A* algorithm was used to determine the best path between the planner's 

current location and the goal. The combination of these two algorithms ensured that the planner was able 

to navigate around obstacles and reach the goal efficiently. In addition, it is important to note that the 

time required by the proposed system for route planning may vary depending on the size of the map, the 

complexity of the route, and the performance of the device used for path planning. Our work was tested 

in a closed environment with moving obstacles for four different paths, and all results were good, 



 Vol. 03,  No. 01    (2023)                                                                                                                                                                             ISSN: 2709-6718 

confirming the effectiveness of our proposed approach. Figure 5 to Figure 8 shows the final path planned 

using the combined approach. 

In summary, the A* algorithm and potential field algorithm proved to be an effective combination, 

providing a comprehensive approach to path planning that enhances the safety and efficiency of self-

driving cars. 

 

Figure 3 Global path planned using A* algorithm. 

 

Figure 4 Example of closed roads in potential field algorithm path planning. 
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Figure 5 path planning simulation result from (0,-40) to (20,20) using combined A* and potential 

field algorithm. 

 

Figure 6 path planning simulation result from (-20,20) to (-20,-40) using combined A* and 

potential field algorithm. 
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Figure 7 path planning simulation result from (-40,-20) to (40,0) using combined A* and 

potential field algorithm. 

 

Figure 8 path planning simulation result from (40,-40) to (-20,20) using combined A* and 

potential field algorithm. 

4. Conclusion 
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          In conclusion, the combination of the A* algorithm for global path planning and the potential field 

algorithm for local path planning has proven to be a promising approach for self-driving cars. A* 

algorithm finds the shortest path between two points by considering the distance and cost associated with 

each possible path. On the other hand, the potential field algorithm creates a repulsive force around 

obstacles and an attractive force towards the destination, guiding the car along a safe and feasible path. 

This approach enables the self-driving car to plan and execute smooth and efficient trajectories, even in 

complex environments with obstacles and dynamic elements. Furthermore, the use of these algorithms 

can enhance the safety, reliability, and performance of self-driving cars, reducing the risk of accidents 

and improving the overall driving experience for passengers.      
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 والمحلي للسيارات ذاتية القيادة  العام تخطيط المسار 

. هذه السيارة قادرة على استشعار البيئة والملاحة وتحقيق إمكانات النقل دون أي تدخل  تعُرف السيارة المستقلة أو الآلية عمومًا باسم السيارة ذاتية القيادة  :الخلاصة

ال  المواقع  تحديد  والرادار ونظام  بالكاميرات  المستقلة محيطها  السيارات  تستشعر  المستقبل.  تكنولوجيا  في تطوير  كبيرة  إنها خطوة  والمسارات  بشري.  عالمي 

ل الازدحام المروري وكذلك تقليل  الملاحية. تعتبر مزايا السيارات ذاتية القيادة، مثل تقليل الاصطدامات المرورية وزيادة الموثوقية وزيادة سعة الطرق وتقلي 

السيارات ذاتية القيادة على الرغم من أنه يتعين علينا التغلب على مشكلات الأمن السيبراني، وموثوقية    . لذا أصبح لزاما تطويرشرطة المرور وتأمين الرعاية

ذاتية القيادة باستخدام   عام والمحلي للسياراتتحقيق في تخطيط المسار ال هدفت هذه الدراسة إلى ال   .البرامج، ومسؤولية الضرر وفقدان الوظائف المتعلقة بالسائق

توضح هذه المقالة نهج    .. كان الهدف هو تحديد فعالية كل خوارزمية واستكشاف كيفية دمجها لتحقيق أفضل النتائج potential fieldو*  Aوهما    خوارزميتين،

أولي يوفر    موالتي تسُتخدم لإنشاء مسار عا  *،  Aتم تصميم المخطط العام باستخدام خوارزمية    ، حيثعقباتها  فيتخطيط حركة السيارة ذاتية القيادة في بيئة  

والتي تسُتخدم لضبط المسار في    ،potential field  طريقة فعالة لضمان أقصر مسار إلى الهدف في بيئة ما. يتم تنفيذ المخطط المحلي باستخدام خوارزمية

ييم  العوائق المحلية والعوامل الديناميكية الأخرى. تعتمد نية استخدام وظيفة محتملة على سلامتها وبساطتها وتكلفة حسابية منخفضة. يتم تق  الوقت الفعلي بناءً على

يؤدي الجمع بين   نالنهج المقترح في بيئة محاكاة ويظهر نتائج واعدة في توفير طريقة فعالة لضمان أقصر طريق إلى الهدف في بيئة بها عوائق. من المتوقع أ

 والمحلية إلى تعزيز متانة وسلامة المركبات المستقلة في سيناريوهات العالم الحقيقي.  مةتقنيات التخطيط العا 

 


