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Abstract 

         The main purpose of the journal bearing is to support the rotating parts by providing a 

sufficient layer of lubricant to separate the surfaces of the moving parts and to minimize the friction 

due to rotation. The misalignment is one of the common problems in the industrial applications of 

this type of bearing which has consequences on the general performance of the bearing system. The 

consequences include the reduction in the bearing load carrying capacity and the effect on the levels 

of the pressure distribution in additional to the asymmetrical pressure distribution along the bearing 

width. This study considers extreme cases of misalignment using a 3D model of the shaft deviation 

for the case of a finite length bearing. Numerical solution for Reynolds equation is considered in 

this work using the finite difference method where the static and dynamic characteristics of finite 

length journal bearing are investigated. The results reveal that the film thickness reduces 

significantly particularly at the edges of the additional to the presence of pressure spikes at these 

locations. Furthermore, the results of the dynamic coefficients have shown that the 3D 

misalignment affects these coefficients significantly which may have further consequences on the 

stability of the system. 
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1. Introduction 

        Journal bearing (J.B.) consists of two main parts, which are journal (shaft) and bearing where 

the shaft is rotating inside the stationary bearing (bush). They are separated with a small clearance 

space filled with lubricant to minimize friction and wear. Journal bearings are widely used   in many 

applications such as cars and trains. Furthermore, journal bearing is used in high-speed rotating 

machines such as compressors, gas turbines, water turbines, steam turbines, electric generators and 

others. 

        In the journal bearing, there is a relatively small is placement called eccentricity between the 

center of the shaft and the center of bearing. The pressure distribution and the amount of load 

depend on this the value of the eccentricity. The minimum film thickness in a hydrodynamically 

lubricated bearing, which also depends on the eccentricity, is a function of the applied load [1]. The 

determination of static and dynamic characteristics of finite length misaligned journal bearings is 

considered as an important subject in the designing of such type of bearings. Therefore, this topic 

has drawn the attention of the researchers in order to improve  the bearing performance. Lund and 

Thomsen [2] used a numerical method for solving Reynolds equation by finite difference method to 

calculate the static and the dynamic characteristics of journal bearing with based on Reynolds 

boundary conditions for a length to diameter ratio of L/D =0.5 and 1. Maspeyrot and Frene [3] 

presented a numerical analysis of journal misalignment problem under high load. Yucel [4] 

calculated the dynamic characteristics of a short journal bearing based on the use of analytical 

solution of the Reynolds equation. Zhao et al. [5] proposed that both stability and oil film forces of 

the hydrodynamic bearing can be expressed by using linear oil film coefficients. Ionescu [6] 

suggested a new mathematical model for analytical solution of thermo-hydrodynamic lubrication to 

make a quick estimation of the main parameters for finite length journal bearings. Chasalevris and 

Sfyris [7] proposed a new analytical method to find a solution for Reynolds equation in order to 

obtain the static and dynamic characteristics of the finite length journal bearing. Kumar et al. [8] 

used analytical solution to investigate the performance of the hydrodynamic bearings for short 

bearing only. Xu et al. [9] presented a solution for the static and dynamic characteristics of journal 

bearing considering the influence of thermohydrodynamic and turbulent flow. Jang and Khonsari 

[10] showed in a review paper that at heavy load, the misalignment significantly affects the system 

performance. Feng et al. [11] presented a solution of water-lubricated journal bearing by using a 

misaligned thermodynamic (THD) model with a turbulent flow consideration. They recommended 

the studying of these two effects on dynamic coefficients, particularly at high eccentricity ratio and 

rotary speed. Jamil et al. [2] used analytical solution for short journal bearing to calculate the 
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dynamic coefficients of a rotor supported on a worn journal bearing. Zhang et al. [13] presented an 

efficient method for water-lubricated circular journal bearing with different working conditions and 

bearing geometries to determine the force and stiffness coefficients of bearing. Binu et al., [14] 

developed a new test rig to obtain experimentally the hydrodynamic pressure for finite journal 

bearings. The results obtained by building a software revealed that the difference between the 

experimental maximum pressure and theoretical solution was about 20%. Zhang et al. [15] analyzed 

hydrodynamic water lubrication of a circular journal bearing under misaligned effect to select 

proper design parameters for the bearing. The obtained results showed a decrease in the load- 

carrying capacity of the bearing due to misalignment. Tarasevych et al. [16] studied the effect of 

random change of main geometrical parameters of full journal bearings using a mathematical 

model. Jamali and Al-Hamood [17] used a 3D model to evaluate the misalignment effect without 

considering the dynamic coefficients. Dyk et al. [18] introduced an approximate solution of the 

Reynolds equation of finite-length journal bearings to specify the linear dynamic coefficients and 

stability of the system. The researchers used a numerical approach but under the assumption of the 

Gumble boundary condition (π –film boundary condition). 

This paper presents a solution to the problem of misaligned journal bearing using a 3D 

misalignment model in order to calculate the static and dynamic characteristics of the system using 

Reynolds boundary condition method. Finite length bearings are considered in the analyses where 

such range of length to diameter ratio is commonly used in the industry.  

 

2.Basic Equations 

        The basic equations for the problem of journal bearing are Reynolds equations and film 

thickness equation which are given by [17] and [7]:  
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Where, 

𝑈𝑚 =
𝑈𝑗+𝑈𝑏

2
, 𝑈𝑚 is the mean velocity of two surfaces,   

The bearing is fixed which means 𝑈𝑏=0, and 

𝜕𝑝

𝜕𝑥
 = the pressure gradient in circumferential direction. 
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𝜕𝑝 

𝜕𝑧
 = the pressure gradient in axial direction 

𝜕ℎ

𝜕𝑥
 = the wedge action term  

𝜕ℎ

𝜕𝑡
 = the squeeze term  

        Reynolds' equation is considered as one of the complicated non-linear partial differential 

equations. Several hypotheses have been formulated and simplified in order to obtain a suitable 

solution for this equation. This includes an incompressible flow assumption ( 𝜌 = constant) and for 

the steady-state case, the squeeze term is considered zero ( 
𝜕ℎ

𝜕𝑡
= 0). Therefore, Eq. (1), can be 

written as: 
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The oil film thickness equation is given by [17]: 

 )cos1(  rch +=                                                                                                                        (3)                                                                                                                                    

Therefore, using dimensionless presentation, Eq. (2), becomes                                                                    
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Where: 

𝛼 =
𝑅2

𝐿2
=

1

4(L/D)2
  

Similarly Eq. (3), is, 

                                                                                                                       (5)                                                                                                                            

Where:                                                                                                                                                                                                                        

 

 

 

 

3.3D misalignment in journal bearing  

( ) cos1 rH +=








−
==

===

R

cpp
PRU

c

h
H

L

z
ZRX

2

0

6
,

,,








` 

Vol.00,No.2(2020 )                                                                                                                                                                ISSN: 
 

 

       The 3D model for the misalignment is illustrated schematically in Fig. 1, The deviations in the 

vertical and horizontal directions are given by ∆𝑣 and ∆ℎ, respectively.  

 

 

 

     

 

 

 

 

 

 

 

          Figure 2.  shows the deviations at any section for the two halves of the bearing. Figure 2a. 

illustrates the left side of the bearing (z ≤ L/2) and Fig. 2b, shows the bearing right side ( z > L/2). 

 

 

 

 

      

 

 

 

 

   Figure 2. Deviation of the journal center due to misalignment; (a) (z ≤ L/2); 

        (b) (z> L/2) [17]. 
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Figure 1. Journal bearing model. (a) 3D  journal bearing; (b) axes deviations [17]. 
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        It can be easily derived the following dimensionless equations which represent the 

misalignment at any given axial position (z):  

 

                                                                                                                                        (6)                                                                                                                                                                                                                                                                    

 Where 𝛿 =
∆

𝑐
    

                             

                                                                                                                                                    (7)                                    

                                                                                                                                                     (8)  
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        The oil film thickness varies along the axial direction because the eccentricity is not constant 

along this-direction in case of misalignment. Therefore, the equation of film thickness for 

misaligned journal bearing is,    

                                                                                                         (11) 

                                        

4. Bearing Characteristics 

        Swift-Stieber (Reynolds) Boundary Condition is used to calculate characteristics of bearing as 

it is a most realistic method for pressure evaluation which involves an iterative procedure to 

determine the boundary where the pressure and its gradient in the circumferential direction become 

zero.  

4.1. Static characteristic: The considered static characteristics are: load-carrying capacity, attitude 

angle and Sommerfeld number. The load components in the radial direction (along the line of the 

center) [7]  can be expressed in dimensionless form as:  
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        The operating conditions of a journal bearing of aspect ratio L/D can be characterized using a 

single dimensionless parameter. An expression which defines the Sommerfeld number can be 

written by: 
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4.2. Dynamic characteristics: 

            Dynamic characteristics considered eight Dynamic coefficients are considered in this work. 

Four coefficients for the stiffness and the other coefficients are for the damping. These coefficients 

are customarily denoted by (𝑘𝑥𝑥, 𝑘𝑥𝑦, 𝑘𝑦𝑥, 𝑘𝑦𝑦, 𝑏𝑥𝑥, 𝑏𝑥𝑦, 𝑏𝑦𝑥, 𝑏𝑦𝑦). The coordinate system defined 

by [2] is used in the calculation of these coefficients which is illustrated in Fig. 3, where 𝑥0, 𝑦0 is 

steady-state position of the journal center.  

 

Figure 3. Coordinate system for dynamic characteristics (Lund, 1987)[2]. 
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        In this section, equations of the dynamic coefficients are derived based on the solution of 

Reynolds Eq. (1), which can be used in order to calculate stiffness and damping coefficients of 

finite-length journal bearing.  
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The equation of film thickness under dynamic condition is [2]:  
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The differentiation of this equation with respect to time yields, 
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Substituting of this equation into Eq. (15),  and using dimensionless forms yields,                            
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        The resultant force can be expressed using x and y coordinates of the journal center and the 

velocity components (𝑥̇. 𝑦̇) as: 
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Where the resultant force is, 

                                                                                                                   (20)                  

        The coefficients (stiffness and damping) can be written in the following form of equations 

[19]: 
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Therefore, differentiation of Eq. (1), based on Eq. (21) and (22), gives:         
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       The stiffness coefficients can be written in the following form for the purpose of 

consistency with reference [2]: 

                                                                                                                                                                                                                     

                                                                                      (24)                     

                          

        Also, in the same way, the damping coefficients are calculated from using the integration over 

the solution domain for the pressure derivatives with respect to 𝑋̇ and 𝑌̇ as:  
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Similarly, the damping coefficients are given by, 
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Also, the differentiation with respect to Y, gives:  
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 Similarly, the differentiation of Eq. (18), with respect to 𝑋̇ and 𝑌̇ respectively, gives: 
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5. Numerical analysis 

      The numerical form for Eq. (4), will be explained below using the discretization shown in Fig. 

4, 

    

 

 

 

 

                                                  

                                                            Figure 4. Finite difference discretization 
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         Similarly, the gradient in the Z direction can be written in the same way that used  in the 

circumferential direction. After that Substituting these equations in Eq. (4), and solving for 𝑃(𝑖, 𝑗) 

yields: 
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The numerical form for oil film thickness is, 

                                                                                                            (34) 

         The determination of the dynamic characteristics requires the numerical solution of Eq. (27), 

(28), (29) and (30). A similar procedure that used for the steady-state case is adopted to obtain the 

solution of these equations which can be written in a general form. Therefore, RHS (27) in a 

numerical form becomes, 

( ) ( ) ( )

( ) ( ) ( )























sin
)(

cos3

)(

cos3

)(

)cos3cos3(

)(

cos3

)(

cos3

)(

)cos3cos3(

2

1,

2

1,

2

,
22

2

,1

2

,1

2

,
22

22

22

−


−


−


+

+


−


−


+

−+

−+

Z

PH

Z

PH

Z

PHH

PHPHPHH

ccdd

bbaa

jijijiccdd

jijijibbaa

                    (35)                                                                                                                                                 

         A similar procedure can be used to discretize the right-hand sides of the other equations and 

therefore these right-hand sides can be written in discrete forms as:  

RHS (28) =                                                              
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𝑅𝐻𝑆(31) = 𝑐𝑜𝑠𝜃(𝑖,𝑗) (37)                                                                                                                                                                                                                                                                

𝑅𝐻𝑆(32) = 𝑠𝑖𝑛𝜃(𝑖,𝑗)                                                                                                                      (38)  

 

        Now using Eq. (35), (36), (37) and (38), Eq. (33), can be solved numerically to calculate the 

corresponding pressure derivative. Therefore, the dynamic characteristics (stiffness and damping 

coefficients) can now be determined by, 
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6. Results 

6.1 Effect of mesh density  

        The total number of mesh points that required to be used in the solution in both directions  is 

examined using 50 to 25600 points  and it is observed that the results for the aligned and misaligned 

cases are sufficient enough when  𝑘 = 16471.  
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6.2 Verification of misaligned model:   

        A comparison between the geometrical model of 3D misalignment that used in this work and 

the results of a recent reference [9] is performed in this section. They presented a study with and 

without the effect of thermodynamic and turbulent flow on the misaligned journal bearing. The 

validation performed with the later case in which the oil film thickness was determined by the use 

of the following equation:  

 
)cos()

2

1
()cos( ooo
D

z
eech  −−−+−+=

 

       In the current work, another expression for the equation of oil film thickness is derived where it 

is a function of the eccentricity ratio of journal bearing and it is variable along the axial direction. 

The results of several cases of both maximum horizontal and vertical deviations are shown in Fig. 

5,. These Fig. 5a and 5b, illustrates a comparison between the two sets of results for three values 

of (𝛿ℎ𝑚𝑎𝑥, 𝛿𝑣𝑚𝑎𝑥) as (0.2, 0.2) and (0.2, 0.3), respectively. It can be seen that very close results 

have been obtained where the maximum difference for the three cases is less than 0.007%. 

 

 

 

 

 

 

 

 

 

6.3 Verification of dynamic coefficients  

        The dynamic coefficients obtained in the current work are compared with the results of the 

well-known work of Lund and Thomsen [2]. The position of grooves relative to the line of the 

center is determined by the secant method [20]. The two sets of results are compared using a wide 

range of eccentricity ratio as shown in Fig. 6 and 7, 

𝐻
𝑚

𝑖𝑛
 

𝐻
𝑚

𝑖𝑛
 

Z 
(a) (b) 

Figure 5. Comparison between current work and reference [9] for the min. film 

thickness.  solid : reference , dashed : current .(a) 𝛿ℎ𝑚𝑎𝑥= 𝛿𝑣𝑚𝑎𝑥=  0.2,   

(b) 𝛿ℎ𝑚𝑎𝑥=0.2, 𝛿𝑣𝑚𝑎𝑥=0.3. 

Z 
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        Figure 6. presents the results for (L/D=0.5) and Fig. 7, shows the results for (L/D=1). It has 

been found that the difference is less than 3 percent when the value of eccentricity ratio 𝜀𝑟 < 0.5 

and less than 1 percent when the eccentricity ratio 𝜀𝑟 ≥0.5. This result is satisfactory since the most 

practical  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4 Static characteristics  

6.4.1 Effect of L/D and eccentricity ratios on the load-carrying capacity. 

𝜀𝑟  𝜀𝑟  

(a) (b) 

Figure 7. Comparison between the current work and [2] for the dimensionless dynamic coefficients, L/D=1. 

(a) stiffness coefficients; (b) damping coefficients. 

𝜀𝑟  𝜀𝑟  

(a) (b) 

Figure 6. Comparison between the current work and [2] for the dimensionless dynamic coefficients, 

L/D=0.5. (a) stiffness coefficients;(b) damping coefficients. 
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         In this section, the load is determined by using different values of length to diameter and 

eccentricity ratios for the aligned case as illustrated in Fig. 8,. Figure 8a. Shows that the load is 

affected by the L/D ratio where it is calculated for a wide range of (L/D) ratio changes from (0.25 to 

2.5) in a step of 0.25. The results demonstrate that the load becomes larger for the high value of L/D 

ratio where the amount of load is 0.049 for L/D=0.25 and 0.912 when L/D=2.5. These results are 

calculated for an eccentricity ratio of 0.6. Figure 8b. illustrated the load variation with the 

eccentricity ratio for a finite length bearing where L/D=1.5. The range of eccentricity ratio is 

between 0.4 and 0.95. It can be seen that the load is significantly depending on the eccentricity 

ratio. The load varies from 0.333 when the eccentricity ratio is 0.4 to 7.014 for the eccentricity ratio 

of 0.95. 

 

 

 

 

 

 

6.4.2 Effect of misalignment on the Attitude Angle and eccentricity ratio.      

        Figure 9. illustrates the effect of 3D   misalignment on the eccentricity ratio and attitude angle. 

Figure 9a. shows the effect on the eccentricity ratio and Fig. 9b, illustrates the effect on the attitude 

angle.  The results at the midplane correspond to the aligned case. It can be seen that the 

misalignment has a significant influence on 𝜀𝑟 and 𝛽 where the change is clear along the axial 

direction.    
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Figure 8. Effect of (L/D) and 𝜀𝑟 ratios on the load. (a) L/D ratio (𝜀𝑟 = 0.6); (b) 𝜀𝑟 (L/D=1.5) 

 

 

 

(b) 

𝜀 𝑟
 

Figure 9. Effect of 3D misalignment (𝛿𝑣𝑚𝑎𝑥 = 0.5, 𝛿ℎ𝑚𝑎𝑥= 0) for L/D=2 on the  

eccentricity ratio and attitude angle along the Z-axis. (a) Eccentricity ratio (𝜀𝑟); (b) 

Attitude angle (𝛽). 

𝛽
 

𝑍 𝑍 

(a

) 



` 

Vol.00,No.2(2020 )                                                                                                                                                                ISSN: 
 

 

6.4.3 Effect of the severe 3D misalignment on the maximum pressure and the minimum 

filmthickness. 

        The effect of 3D misalignment (vertical and horizontal) on 𝑃𝑚𝑎𝑥 and 𝐻𝑚𝑖𝑛, which have 

influences on the performance of the journal bearing, is shown in Figure 10. The results are 

calculated for a wide range of 𝛿ℎ𝑚𝑎𝑥, 𝛿𝑣𝑚𝑎𝑥 in a step of 0.1. Figure 10. shows the effect of 3D 

misalignment on 𝑃𝑚𝑎𝑥 and 𝐻𝑚𝑖𝑛 when (L/D=2). Regarding this figure, the 3D misalignment 

increases 𝑃𝑚𝑎𝑥 significantly and decreases 𝐻𝑚𝑖𝑛 particularly when 𝛿ℎ𝑚𝑎𝑥, 𝛿𝑣𝑚𝑎𝑥 >0.3. The 

maximum pressure increases from 0.8581 for the aligned case to 1.4392 when 𝛿ℎ𝑚𝑎𝑥, 𝛿𝑣𝑚𝑎𝑥= 0.54. 

The corresponding film thickness decreases from 0.3999 to 0.0827. This represents an increase of 

67.7% in 𝑃𝑚𝑎𝑥 and a reduction of 79.3% in 𝐻𝑚𝑖𝑛.  

 

 

 

 

 

      

  

 

 

 

        Two cases are considered in this section which are perfectly aligned and misaligned. 2D and 

3D pressure distributions for (L/D=2) are shown in Fig. 11,. The left side shows the 2D pressure 

distribution and the right side shows the 3D pressure distribution for these cases, respectively. The 

maximum pressure for the first case (aligned) is (𝑃𝑚𝑎𝑥 =0.8581), while in the second case 

(misaligned), a significant change can be seen in the pressure distribution where (𝑃𝑚𝑎𝑥 = 1.4392).  It 

can be seen in these figures that the misalignment causes pressure spike at a location very close to 

the edge.  

 

 

 

𝑃 𝑚
𝑎

𝑥
 

Figure 10. Effect 3D mis.  (𝛿ℎ𝑚𝑎𝑥 and 𝛿𝑣𝑚𝑎𝑥) on the dimensionless max. pressure and min. 

thickness of the lubricant (L/D=2). 
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𝛿ℎ𝑚𝑎𝑥 = 𝛿𝑣𝑚𝑎𝑥 
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6.5 Dynamic coefficients 

        The effects of 3D misalignment on the dynamic coefficients 

(𝐾𝑥𝑥, 𝐾𝑥𝑦, 𝐾𝑦𝑥, 𝐾𝑦𝑦,𝐵𝑥𝑥, 𝐵𝑥𝑦, 𝐵𝑦𝑥, 𝐵𝑦𝑦) for L/D = 2 are shown in Table 1 for a range of misalignment 

values. The first row shows the result of  the perfectly aligned case.  It can be seen that the 3D 

misalignment has significant effects on these coefficients.  The results show that  𝐾𝑥𝑥 is 1.8055 in 

the aligned case and increases to 2.4947 at the high level of misalignment. This means that the 

amount of change in 𝐾𝑥𝑥 in the case of 3D misalignment is 38.2% in comparison with the aligned 

case.  The other stiffness coefficient   𝐾𝑥𝑦  is 2.6528 in the aligned case and decreases to 2.2874 in 

misaligned case.  In such range, the percentage change in 𝐾𝑥𝑦  is 13.8%.  The percentage change in  

Figure 11.2D and 3D pressure distribution, L/D=2, 𝛿ℎ𝑚𝑎𝑥 = 𝛿𝑣𝑚𝑎𝑥 =0.54; left :2D ,right: 3D, 

a:aligned,b: misaligned. 

(a) 

(b) 

𝜃° 

𝑍 

𝜃° 

𝑍 

𝜃° 
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𝜃° 
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𝐾𝑦𝑥 and 𝐾𝑦𝑦  is -241.2% and 81.1%  respectively due to misalignment.  Table 1. illustrates also the 

corresponding results for the dimensionless damping coefficients. It can be seen that 𝐵𝑥𝑥 is slightly 

affected by the misalignment. The variation is only 5.7%  in comparison with the aligned case. The 

change in the other coefficients, 𝐵𝑥𝑦 (= 𝐵𝑦𝑥), 𝐵𝑦𝑦 is 70.8 %  and 78.1% respectively.  

 

        Table1. Effect of 3D misalignment on the stiffness and damping coefficients (L/D=2)  

 𝛿𝑣𝑚𝑎𝑥

= 
𝛿ℎ𝑚𝑎𝑥 

KXX KXY KYX KYY BXX BXY BYX BYY 

0 1.805 2.653 -0.531 1.605 5.517 1.746 1.746 2.295 

0.4 1.963 2.583 -0.979 2.019 5.581 1.238 1.238 3.067 

0.45 2.057 2.528 -1.171 2.213 5.623 1.051 1.051 3.347 

0.54 2.495 2.287 -1.811 2.906 5.832 0.509 0.509 4.088 

 

 

7. Conclusions

 

        In this paper, a detailed investigation is presented for the effect of misalignment on the 

characteristics of journal bearing. The governing equations are solved numerically for a finite length 

journal bearing based on the finite difference method where Reynolds boundary conditions method 

is used in the solution scheme. All the equations are presented in a dimensionless form for the 

purpose of generality of the results. A general 3D model for the misalignment is used in this 

analysis where both horizontal and vertical deviations of the journal axis are taken into 

consideration. A comprehensive program computer code has been developed which has the ability 

to analyse the problem of misaligned journal bearing, regardless of the L/D ratio. The results 

revealed that the eccentricity ratio and attitude angle are significantly affected by the misalignment 

along the axial direction. In general, the presence of misalignment increases 𝑃𝑚𝑎𝑥 and reduce 𝐻𝑚𝑖𝑛.  

Furthermore, it changes the shape of the pressure distribution significantly. The effect of 

misalignment on the friction coefficient is not significant and side flow value decreases in the 

misaligned case due to the decrease of film thickness. The calculations of dynamic coefficients in 

this study are performed for L/D =1.5 and it has been found that the misalignment causes significant 

variation in these coefficients. Further investigation is required in order to consider the thermal 

effect in the analyses which will be performed in future work.  
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Nomenclature 

Symbol Description Units 

𝐵xx.𝐵xy 

𝐵yx.𝐵yy 
Dimensionless damping coefficients - 

𝑐 Bearing radial clearance m 

𝐷 Diameter of shaft m 

𝑒 Eccentricity of journal m 

𝐹𝑥 Force in x-direction N 

𝐹𝑦 Force in y-direction N 

𝐹 Total Force N 

𝐻 Non- dimensional oil film thickness, 𝐻 =
ℎ

𝑐
 - 

𝐻min Dimensionless Minimum Oil film thickness - 

ℎ Oil film thickness m 
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𝑘 Total number of mesh   𝑘 = 𝑀 × 𝑁 - 

𝐾xx.𝐾xy 

𝐾yx.𝐾yy 
Dimensionless Stiffness coefficients - 

𝐿 Bearing length m 

𝑀 
Number of mesh point in the longitudinal 

direction (z) 
- 

𝑁 
Number of mesh point in the circumferential 

direction (θ) 
- 

𝑁𝑟 Rotational speed Rps 

 

𝑃 

Non-dimensional oil film pressure, 

2

6








=

R

cp
P


 

- 

𝑃̅ Derivative of pressure (dimensionless) - 

𝑃max Non-dimensional maximum pressure - 

𝑅 Bearing radius m 

𝑅𝐹 Relaxation factor - 

𝑠 Somerfeld number - 

𝑡 Time Sec 

𝑈 Velocity m/sec 

𝑈𝑚 Mean velocity m/sec 

𝑊 Total Load carrying capacity N 

  𝑊̅𝑟 Dimensionless Load in the radial-direction N 

  𝑊̅𝑡 Dimensionless Load in the tangential-direction N 

𝑊̅ Dimensionless total load of journal bearing - 

𝑍 Non-dimensional axial coordinate, Z =
𝑍

𝐿
 - 

𝑧 Axial coordinate, 0 ≤  𝑧 ≤  𝐿 m 
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Greek symbols 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Units Description Symbol 

- Constant in Reynolds equation 𝛼 

degree Attitude angle 𝛽 

m Horizontal misalignment ∆ℎ 

m Maximum horizontal misalignment ∆ℎ𝑚𝑎𝑥 

m Vertical misalignment ∆𝑣 

m Maximum vertical misalignment ∆𝑣𝑚𝑎𝑥 

degree Step in the circumferential direction 𝛥𝜃 

- Step in the longitudinal direction 𝛥𝑍 

- Dimensionless misalignment δ = ∆ c⁄  𝛿 

- Eccentricity Ratio, εr =
e

c
 𝜀𝑟 

Pa. s Lubricant viscosity 𝜂 

degree Angle in the circumferential direction 𝜃 

degree Cavitation angle   𝜃𝑐 

Kg/m3 Density of oil 𝜌 

- Dimensionless side –leakage flow 𝜑𝑑 

rad/sec Journal Angular velocity, ω = 2πN ω 

- Friction coefficient 𝑓 


